Physiologic gating properties of unitary cardiac L-type Ca2+ channels
نویسندگان
چکیده
منابع مشابه
Unitary behavior of skeletal, cardiac, and chimeric L-type Ca2+ channels expressed in dysgenic myotubes
Skeletal and cardiac dihydropyridine receptors function both as voltage-dependent L-type calcium channels (L-channels) and as critical proteins that trigger calcium release from the sarcoplasmic reticulum in muscle. In spite of these similarities, skeletal L-channels exhibit a markedly slower activation rate than cardiac L-channels. We investigated the mechanisms underlying this difference by c...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملThe role of stochastic and modal gating of cardiac L-type Ca2+ channels on early after-depolarizations.
Certain signaling events that promote L-type Ca2+ channel (LCC) phosphorylation, such as beta-adrenergic stimulation or an increased expression of Ca(2+)/calmodulin-dependent protein kinase II, promote mode 2 gating of LCCs. Experimental data suggest the hypothesis that these events increase the likelihood of early after-depolarizations (EADs). We test this hypothesis using an ionic model of th...
متن کاملA model for cooperative gating of L-type Ca2+ channels and its effects on cardiac alternans dynamics
In ventricular myocytes, membrane depolarization during the action potential (AP) causes synchronous activation of multiple L-type CaV1.2 channels (LTCCs), which trigger the release of calcium (Ca2+) from the sarcoplasmic reticulum (SR). This results in an increase in intracellular Ca2+ (Cai) that initiates contraction. During pulsus alternans, cardiac contraction is unstable, going from weak t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemical and Biophysical Research Communications
سال: 2010
ISSN: 0006-291X
DOI: 10.1016/j.bbrc.2010.05.016